SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation Solvers

Carol S. Woodward

and

The SUNDIALS Team:

Peter Brown, Aaron Collier, Keith Grant, Alan Hindmarsh, Steven Lee, and Radu Serban

Center for Applied Scientific Computing, LLNL

Outline

- SUNDIALS Overview
- ODE and DAE integration
 - Initial value problems
 - Implicit integration methods
- Nonlinear Systems
 - Newton's method and inexact Newton's method
 - Preconditioning
- Sensitivity analysis
 - Definitions, applications, methods
 - Forward sensitivity analysis
 - Adjoint sensitivity analysis
- SUNDIALS: usage, applications, and availability

LLNL has a long history of R&D in ODE/DAE methods and software

- Fortran solvers written at LLNL:
 - —VODE: stiff/nonstiff ODE systems, with direct linear solvers
 - VODPK: with Krylov linear solver (GMRES)
 - NKSOL: Newton-Krylov solver nonlinear algebraic systems
 - —DASPK: DAE system solver (from DASSL)
- Recent focus has been on parallel solution of large-scale problems and on sensitivity analysis

Push to solve large, parallel systems motivated rewrites in C

- CVODE: rewrite of VODE/VODEPK [Cohen, Hindmarsh, 94]
- PVODE: parallel CVODE [Byrne and Hindmarsh, 98]
- KINSOL: rewrite of NKSOL [Taylor and Hindmarsh, 98]
- IDA: rewrite of DASPK [Hindmarsh and Taylor, 99]
- Sensitivity variants: SensPVODE, SensIDA, SensKINSOL [Brown, Grant, Hindmarsh, Lee, 00-01]
- New sensitivity-capable solvers:
 - CVODES [Hindmarsh and Serban, 02]
 - IDAS in development
- Organized into a single suite, SUNDIALS, including CVODE and CVODES, IDA, KINSOL, and soon IDAS

The SUNDIALS package offers Newton solvers, time integration, and sensitivity solvers

- CVODE: implicit ODE solver, y' = f(y, t)
 - Variable-order, variable step BDF (stiff) or implicit Adams (nonstiff)
 - Nonlinear systems solved by Newton or functional iteration
 - Linear systems by direct (dense or band) or iterative solvers
- IDA: implicit DAE solver, F(t, y, y') = 0
 - Variable-order, variable step BDF
 - Nonlinear system solved by Newton iteration
 - Linear systems by direct (dense or band) or iterative solvers
- KINSOL: Newton solver, F(u) = 0
 - Inexact and Modified (with dense solve) Newton
 - Linear systems by iterative or dense direct solvers
- CVODES: sensitivity-capable (forward & adjoint) CVODE
- IDAS: sensitivity-capable (forward & adjoint) IDA
- Iterative linear Krylov solvers: GMRES, BiCGStab, TFQMR

SUNDIALS was designed to easily interface with legacy codes

- Philosophy: Keep codes simple to use
- Written in C
 - —Fortran interfaces: fcvode, fida, and fkinsol
 - —Matlab interfaces: sundialsTB (cvodes and kinsol)
- Written in a data structure neutral manner
 - —No specific assumptions about data
 - Application-specific data representations can be used
- Modular implementation
 - —Vector modules
 - —Linear solver modules
- Require minimal problem information, but offer user control over most parameters

Initial value problems (IVPs) come in the form of ODEs and DAEs

The general form of an IVP is given by

$$F(\dot{x},x)=0$$

$$x(t_o)=x_o$$

- If $\partial F/\partial \dot{x}$ is invertible, we solve for \dot{x} to obtain an ordinary differential equation (ODE)
- Else, the IVP is a differential algebraic equation (DAE)
- A DAE has differentiation index i if i is the minimal number of analytical differentiations needed to extract an explicit ODE

Stiffness of an equation can significantly impact whether implicit methods are needed

- (Ascher and Petzold, 1998): If the system has widely varying time scales, and the phenomena that change on fast scales are stable, then the problem is stiff
- Stiffness depends on
 - Jacobian eigenvalues, λ_i
 - System dimension
 - Accuracy requirements
 - Length of simulation
- In general a problem is stiff on [t₀, t₁] if

$$(t_1-t_0)\min_j\Re(\lambda_j)<<-1$$

Dalquist test problem shows impact of stability on step sizes for explicit and implicit methods

Dalquist test equation: $\dot{y} = \lambda y$, $y_0 = 1$

Exact solution: $y(t_n) = y_0 e^{\lambda t_n}$

Absolute stability requirement

$$|y_n| \le |y_{n-1}|, \quad n = 1,2,...$$

Reason: If Re(λ)<0, then |y(t_n)| decays exponentially, and we cannot tolerate growth in y_n

Region of absolute stability: $S = \{z \in C; |R(z)| \le 1\}$ where an integrator can be written as $y_n = R(z)y_{n-1}$, with time step $z = h\lambda$

Forward and backward Euler show different stability restrictions

• Forward Euler: $y_n = y_{n-1} + h(\lambda y_{n-1}) \Rightarrow R(z) = 1 + h\lambda$

So, if $\lambda < 0$, FE has the step size restriction: $h \le \frac{2}{-\lambda}$

• Backward Euler: $y_n = y_{n-1} + h(\lambda y_n) \Rightarrow R(z) = \frac{1}{1 - h\lambda}$

So, if λ < 0, BE has the step size restriction: h > 0

Curtiss and Hirchfelder example

$$\dot{y} = -50(y - \cos(t)) \quad \lambda = -50$$

Solution curves

Forward Euler h=2.01/50

Curtiss and Hirchfelder example

$$\dot{y} = -50(y - \cos(t)) \quad \lambda = -50$$

Forward Euler

Implicit schemes h=0.5 for BE

SUNDIALS has implementations of Linear Multistep Methods (LMM)

General form of LMM:
$$\sum_{i=0}^{K_1} \alpha_{n,i} y_{n-i} + h_n \sum_{i=0}^{K_2} \beta_{n,i} \dot{y}_{n-i} = 0$$

- Two methods:
 - Adams-Moulton (nonstiff); $K_1 = 1$, $K_2 = k$, k = 1,...,12
 - BDF (stiff); $K_1 = k$, $K_2 = 0$, k = 1,...,5
- Nonlinear systems (BDF)
 - ODE:

$$\dot{y} = f(y)$$
 $G(y_n) \equiv y_n - \beta_0 h_n f(y_n) - \sum_{i=1}^k \alpha_{n,i} y_{n-i} = 0$

— DAE:

$$F(\dot{y}, y) = 0$$
 $G(y_n) = F((\beta_0 h_n)^{-1} \sum_{i=1}^k \alpha_{n,i} y_{n-i}, y_n) = 0$

Stability is very restricted for higher orders of BDF methods

$$\mathbf{y}_{n} - \beta_{0} \mathbf{h}_{n} \dot{\mathbf{y}}_{n} = \sum_{i=1}^{k} \alpha_{n,i} \mathbf{y}_{n-i}$$

CVODE solves y'=f(t,y)

- Variable order and variable step size methods:
 - BDF (backward differentiation formulas) for stiff systems
 - Implicit Adams for nonstiff systems
- (Stiff case) Solves time step for the system $\dot{y} = f(t, y)$
 - applies an explicit predictor to give $y_{n(0)}$

$$\mathbf{y}_{n(0)} = \sum_{j=1}^{q} \alpha_{j}^{p} \mathbf{y}_{n-j} + \Delta t \beta_{1}^{p} \dot{\mathbf{y}}_{n-1}$$

— applies an implicit corrector with $y_{n(0)}$ as the initial guess

$$\mathbf{y}_{n} = \sum_{j=1}^{q} \alpha_{j} \mathbf{y}_{n-j} + \Delta t \beta_{0} \mathbf{f}_{n} (\mathbf{y}_{n})$$

Time steps are chosen to minimize the local truncation error

- Time steps are chosen by:
 - Estimate the error: $E(\Delta t) = C(y_n y_{n(0)})$
 - -Accept step if $||E(\Delta t)||_{WRMS} < 1$
 - -Reject step otherwise
 - Estimate error at the next step, Δt , as

$$E(\Delta t') \approx (\Delta t'/\Delta t)^{q+1} E(\Delta t)$$

- Choose next step so that $||E(\Delta t')||_{WRMS} < 1$
- Choose method order by:
 - Estimate error for next higher and lower orders
 - Choose the order that gives the largest time step meeting the error condition

Computations weighted so no component disproportionally impacts convergence

- An absolute tolerance is specified for each solution component, ATOLⁱ
- A relative tolerance is specified for all solution components, RTOL
- Norm calculations are weighted by:

$$\mathbf{ewt}^{i} = \frac{1}{\mathbf{RTOL} \cdot |\mathbf{y}^{i}| + \mathbf{ATOL}^{i}} \qquad \|\mathbf{y}\|_{\mathbf{WRMS}} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\mathbf{ewt}^{i} \cdot \mathbf{y}^{i}\right)^{2}}$$

Bound time integration error with:

$$\left\|\mathbf{y}_{n}-\mathbf{y}_{n(0)}\right\|<\frac{1}{6}$$

The 1/6 factor tries to account for estimation errors

Nonlinear system will require nonlinear solves

- Use predicted value as the initial iterate for the nonlinear solver
- Nonstiff systems: Functional iteration

$$\mathbf{y}_{n(m+1)} = \beta_0 \mathbf{h}_n f(\mathbf{y}_{n(m)})$$

Stiff systems: Newton iteration

$$M(y_{n(m+1)}-y_{n(m)})=-G(y_{n(m)})$$

— ODE:
$$\mathbf{M} \approx \mathbf{I} - \gamma \, \partial \mathbf{f} / \partial \mathbf{y}$$
, $\gamma = \beta_0 \mathbf{h}_n$

— DAE:
$$\mathbf{M} \approx \partial \mathbf{F}/\partial \mathbf{y} + \gamma \partial \mathbf{F}/\partial \dot{\mathbf{y}}$$
, $\gamma = 1/(\beta_0 h_n)$

SUNDIALS provides many options for linear solvers

- Iterative linear solvers
 - Result in inexact Newton solver
 - Scaled preconditioned solvers: GMRES, Bi-CGStab, TFQMR
 - Only require matrix-vector products
 - Require preconditioner for the Newton matrix, M
- Jacobian information (matrix or matrix-vector product) can be supplied by the user or estimated with finite difference quotients
- Two options require serial environments and some predefined structure to the data
 - Direct dense
 - Direct band

An inexact Newton-Krylov method can be used to solve the implicit systems

- Krylov iterative method finds linear system solution in Krylov subspace: $K(J,r) = \{r, Jr, J^2r, ...\}$
- Only require matrix-vector products
- Difference approximations to the matrix-vector product are used,

$$J(x)v \approx \frac{F(x+\theta v) - F(x)}{\theta}$$

 Matrix entries need never be formed, and memory savings can be used for a better preconditioner

IDA solves F(t, y, y') = 0

- C rewrite of DASPK [Brown, Hindmarsh, Petzold]
- Variable order / variable coefficient form of BDF
- Targets: implicit ODEs, index-1 DAEs, and Hessenberg index-2 DAEs
- Optional routine solves for consistent values of y₀ and y₀'
 - Semi-explicit index-1 DAEs, differential components known, algebraic unknown OR all of y₀' specified, y₀ unknown
- Nonlinear systems solved by Newton-Krylov method
- Optional constraints: $y^i > 0$, $y^i < 0$, $y^i \ge 0$, $y^i \le 0$

KINSOL solves F(u) = 0

- C rewrite of Fortran NKSOL (Brown and Saad)
- Inexact Newton solver: solves $\int \Delta u^n = -F(u^n)$ approximately
- Modified Newton (with direct solves) this freezes the Newton matrix over a number of iterations
- Krylov solver: scaled preconditioned GMRES, TFQMR, Bi-CGStab
 - Optional restarts for GMRES
 - Preconditioning on the right: $(J P^{-1})(Ps) = -F$
- Direct solvers: dense and band (serial & special structure)
- Optional constraints: $u_i > 0$, $u_i < 0$, $u_i \ge 0$ or $u_i \le 0$
- Can scale equations and/or unknowns
- Dynamic linear tolerance selection

An inexact Newton's method is used to solve the nonlinear problem

- 1. Starting with x^0 , want x^* such that $F(x^*) = 0$
- 2. Repeat for each k until $||F(x^{k+1})|| \le tol$
 - a. Solve (approximately) $J(x^k)s^k = -F(x^k)$
 - b. Update, $x^{k+1} = x^k + \lambda s^k$

- tol may be chosen adaptively based on accuracy requirements
- λ is a search parameter
- ||.|| is a weighted L-2 norm

Linear stopping tolerances must be chosen to prevent "oversolves"

The linear system is solved to a given tolerance:

$$\left\|\mathbf{F}(\mathbf{x}^{k}) + \mathbf{J}(\mathbf{x}^{k})\mathbf{s}^{k+1}\right\| \leq \eta^{k} \left\|\mathbf{F}(\mathbf{x}^{k})\right\|$$

- Newton method assumes a linear model
 - Bad approximation far from solution, loose tol.
 - Good approximation close to solution, tight tol.
- Eisenstat and Walker (SISC 96)

— Choice 1
$$\eta^k = ||F^k|| - ||F^{k-1} - J^{k-1}s^{k-1}|| / ||F^{k-1}||$$

— Choice 2
$$\eta^k = 0.9 (||\mathbf{F}^{(k)}|| / ||\mathbf{F}^{(k-1)}||)^2$$

• ODE literature $\eta^k = 0.05$

Inexact methods maintain the fast rate of convergence of Newton's method

 Convergence of Newton's method is q-quadratic locally, for some constant C

$$\left\|\mathbf{x}^{k+1} - \mathbf{x}^*\right\| \le \mathbf{C} \left\|\mathbf{x}^k - \mathbf{x}^*\right\|^2$$

- Convergence of an inexact Newton method is
 - q-linear if, η^k is constant in k
 - q-super-linear if, $\lim_{k\to\infty}\eta^k=0$
 - q-quadratic if for some constant C

$$\|\mathbf{F}(\mathbf{x}^{k}) + \mathbf{J}(\mathbf{x}^{k})\mathbf{s}^{k+1}\| \le \mathbf{C} \|\mathbf{F}(\mathbf{x}^{k})\|^{2}$$

Eisenstat and Walker methods are q-quadratic

Line-search globalization for Newton's method can enhance robustness

- User can select:
 - Inexact Newton
 - Inexact Newton with line search
- Line searches can provide more flexibility in the initial guess (larger time steps)
- Take, $x^{k+1} = x^k + \lambda s^{k+1}$, for λ chosen appropriately (to satisfy the Goldstein-Armijo conditions):
 - sufficient decrease in F relative to the step length
 - minimum step length relative to the initial rate of decrease
 - full Newton step when close to the solution

Preconditioning is essential for large problems as Krylov methods can stagnate

- Preconditioner P must approximate Newton matrix, yet be reasonably efficient to evaluate and solve.
- Typical P (for time-dep. problem) is $I \gamma \widetilde{J}$, $\widetilde{J} \approx J$
- The user must supply two routines for treatment of P:
 - Setup: evaluate and preprocess P (infrequently)
 - Solve: solve systems Px=b (frequently)
- User can save and reuse approximation to J, as directed by the solver
- SUNDIALS offers hooks for user-supplied preconditioning

Sensitivity Analysis

 Sensitivity Analysis (SA) is the study of how the variation in the output of a model (numerical or otherwise) can be apportioned, qualitatively or quantitatively, to different sources of variation in inputs.

Applications:

Model evaluation (most and/or least influential parameters),
 Model reduction, Data assimilation, Uncertainty quantification,
 Optimization (parameter estimation, design optimization,
 optimal control, ...)

Approaches:

- Forward sensitivity analysis
- Adjoint sensitivity analysis

Sensitivity Analysis Approaches

Parameter dependent system

$$\begin{cases} F(x, \dot{x}, t, p) = 0 \\ x(0) = x_0(p) \end{cases}$$

FSA

$\begin{cases} F_{\dot{x}}\dot{s}_i + F_{x}s_i + F_{p_i} = 0\\ s_i(0) = dx_0/dp_i \end{cases}, \quad i = 1,..., N_p$

$$g(t, x, p)$$

$$\frac{dg}{dp} = g_x s + g_p$$

ASA

$$\begin{cases} (\lambda^* F_{\dot{x}})' - \lambda^* F_{\dot{x}} = -g_{\dot{x}} \\ \lambda^* F_{\dot{x}} x_{\dot{p}} = \dots & \text{at } t = T \end{cases}$$

$$G(x,p) = \int_0^T g(t,x,p)dt$$

$$\frac{dG}{dp} = \int_0^T (g_p - \lambda^* F_p)dt - (\lambda^* F_{\dot{x}} x_p)_0^T$$

Computational cost:

 $(1+N_p)N_x$ increases with N_p

Computational cost:

 $(1+N_g)N_x$ increases with N_g

FSA - Methods

- Staggered Direct Method: On each time step, converge Newton iteration for state variables, then solve linear sensitivity system
 - Requires formation and storage of Jacobian matrices, Not matrixfree, Errors in finite-difference Jacobians lead to errors in sensitivities
- Simultaneous Corrector Method: On each time step, solve the nonlinear system simultaneously for solution and sensitivity variables
 - Block-diagonal approximation of the combined system Jacobian,
 Requires formation of sensitivity R.H.S. at every iteration
- Staggered Corrector Method: On each time step, converge
 Newton for state variables, then iterate to solve sensitivity system
 - With Krylov

FSA – Generation of the sensitivity system

- **Analytical**
- **Automatic differentiation**
 - ADIFOR, ADIC, ADOLC
 - complex-step derivatives
- **Directional derivative approximation**

$$\frac{\partial f}{\partial x}s_{i} \approx \frac{f(t, x + \sigma_{x}s_{i}, p) - f(t, x - \sigma_{x}s_{i}, p)}{2\sigma_{x}} \qquad \begin{cases} \sigma_{i} = |\overline{p}_{i}|\sqrt{\max(rtol, \varepsilon)} \\ \sigma_{x} = \frac{1}{\max(1/\sigma_{i}, \|s_{i}\|_{WRMS}/|\overline{p}_{i}|)} \end{cases}$$

CVODES case

$$\dot{x} = f(t, x, p)$$

$$\dot{s}_{i} = \frac{\partial f}{\partial x} s_{i} + \frac{\partial f}{\partial p_{i}}$$

$$\begin{cases} \sigma_i = |\overline{p}_i| \sqrt{\max(rtol, \varepsilon)} \\ \sigma_x = \frac{1}{\max(1/\sigma_i, \|\mathbf{s}_i\|_{WRMS}/|\overline{p}_i|)} \end{cases}$$

$$\frac{\partial f}{\partial x}s_i + \frac{\partial f}{\partial p_i} \approx \frac{f(t, x + \sigma s_i, p + \sigma e_i) - f(t, x - \sigma s_i, p - \sigma e_i)}{2\sigma} \qquad \sigma = \min(\sigma_i, \sigma_x)$$

ASA – Implementation

Solution of the forward problem is required for the adjoint problem

 → need predictable and compact storage of solution values for the solution of the adjoint system

- Cubic Hermite or variable-degree polynomial interpolation
- Simulations are reproducible from each checkpoint
- Force Jacobian evaluation at checkpoints to avoid storing it
- Store solution and first derivative
- Computational cost: 2 forward and 1 backward integrations

ASA – Generation of the sensitivity system

Analytical

- Tedious
- For PDEs: in general, adjoint and discretization operators do NOT commute
- Automatic differentiation
 - Certainly the most attractive alternative
 - Reverse AD tools not as mature as forward AD tools
- Finite difference approximation
 - NOT an option (computational cost equivalent to FSA!)

The SUNDIALS vector module is generic

- Data vector structures can be user-supplied
- The generic NVECTOR module defines:
 - A content structure (void *)
 - An ops structure pointers to actual vector operations supplied by a vector definition
- Each implementation of NVECTOR defines:
 - Content structure specifying the actual vector data and any information needed to make new vectors (problem or grid data)
 - Implemented vector operations
 - Routines to clone vectors
- Note that all parallelism (if needed) resides in reduction operations: dot products, norms, mins, etc.

SUNDIALS provides serial and parallel NVECTOR implementations

- Use is, of course, optional
- Vectors are laid out as an array of doubles (or floats)
- Appropriate lengths (local, global) are specified
- Operations are fast since stride is always 1
- All vector operations are provided for both serial and parallel cases
- For the parallel vector, MPI is used for global reductions
- These serve as good templates for creating a usersupplied vector structure around a user's own existing structures

SUNDIALS provides Fortran interfaces

- CVODE, IDA, and KINSOL
- Cross-language calls go in both directions:
- Fortran user code ←→ interfaces ←→ CVODE/KINSOL/IDA
- Fortran main → interfaces to solver routines
- Solver routines → interface to user's problem-defining routine and preconditioning routines
- For portability, all user routines have fixed names
- Examples are provided

SUNDIALS provides Matlab interfaces

- CVODES, KINSOL, and (next release) IDA
- The core of each interface is a single MEX file which interfaces to solver-specific user-callable functions
- Guiding design philosophy: make interfaces equally familiar to both SUNDIALS and Matlab users
 - all user-provided functions are Matlab m-files
 - all user-callable functions have the same names as the corresponding C functions
 - unlike the Matlab ODE solvers, we provide the more flexible SUNDIALS approach in which the 'Solve' function only returns the solution at the next requested output time.
- Includes complete documentation (including through the Matlab help system) and several examples

Structure of SUNDIALS

SUNDIALS code usage is similar across the suite

- Have a series of Set/Get routines to set options
- For CVODE with parallel vector implementation:

```
#include "cvode.h"
#include "cvode spgmr.h"
#include "nvector *.h"
y = N_VNew_*(n,...);
cvmem = CVodeCreate(CV BDF,CV NEWTON);
flag = CVodeSet*(...);
flag = CVodeMalloc(cvmem,rhs,t0,y,...);
flag = CVSpgmr(cvmem,...);
for(tout = ...) {
   flag = CVode(cvmem, ...,y,...); }
NV Destroy(y);
CVodeFree(&cvmem);
```

Forward Sensitivity Analysis in SUNDIALS

User main Specification Activation User probl User preco

> Vect Kern

```
#include "cvodes.h"
#include "cvodes spgmr.h"
                                                     red)
#include "nvector *.h"
                                                     CS
y = N VNew*(n,...);
cvmem = CVodeCreate(CV BDF,CV NEWTON);
flag = CVodeSet*(...);
flag = CVodeMalloc(cvmem,rhs,t0,y,...);
flag = CVSpgmr(cvmem,...);
yS = N VNewVectorArray *(Ns,...);
flag = CVodeSetSens*(...);
flag = CVodeSensMalloc(cvmem,...,yS);
for(tout = ...) {
      flag = CVode(cvmem, ...,y,...);
      flag = CVodeGetSens(cvmem,t,yS);
                                                    oner
NV_Destroy(y);
NV DestroyVectorArray(yS,Ns);
CVodeFree(&cvmem);
```

Adjoint Sensitivity Analysis in SUNDIALS

User main
Activation
User probl
User revers
User preco
User revers

(Modifi Vecto Kerne

```
#include "cvodes.h"
#include "cvodea.h"
#include "cvodes spgmr.h"
#include "nvector_*.h"
                                                            led
y = N_VNew_*(n,...);
cvmem = CVodeCreate(CV BDF,CV NEWTON);
CVodeSet*(...); CVodeMalloc(...); CVSpgmr(...);
cvadj = CVadjMalloc(cvmem,STEPS);
flag = CVodeF(cvadj,...,&nchk);
yB = N VNew *(nB,...);
CVodeSet*B(...); CVodeMallocB(...); CVSpgmrB(...);
for(tout = ...) {
       flag = CVodeB(cvadi, ...,yB,...);
NV_Destroy(y);
                                                            oner
NV Destroy(yB);
CVodeFree(&cvmem);
CVadiFree(&cvadi);
```

Applications of SUNDIALS

- Parallel CVODE is being used in a 3D tokamak turbulence model in LLNL's Magnetic Fusion Energy Division. A typical run has 7 unknowns on a 64x64x40 mesh, with up to 60 processors
- KINSOL with a HYPRE multigrid preconditioner is being applied within CASC to solve a nonlinear Richards' equation for pressure in porous media flows. Fully scalable performance was obtained on up to 225 processors on ASCI Blue.
- CVODE, KINSOL, IDA, with MG preconditioner, are being used to solve 3D neutral particle transport problems in CASC. Scalable performance obtained on up to 5800 processors on ASCI Red.

Applications with sensitivity analysis

- SensPVODE, SensKINSOL, SensIDA used to determine solution sensitivities in neutral particle transport applications.
- IDA and SensIDA used in a cloud and aerosol microphysics model at LLNL to study cloud formation processes.
- SensKINSOL used for sensitivity analysis of groundwater simulations.
- CVODES used for sensitivity analysis of chemically reacting flows (SciDAC collaboration with Sandia Livermore).
- CVODES used for sensitivity analysis of radiation transport (diffusion approximation).
- KINSOL+CVODES used for inversion of large-scale timedependent PDEs (atmospheric releases).

Influence of Opacity Parameters in Radiation-Diffusion Models

$$\frac{\partial E_R}{\partial t} = \nabla \cdot \left(\frac{c}{3\kappa_R(\rho, T_R) + \|\nabla E_R / E_R\|} \nabla E_R \right) + c\kappa_P(\rho, T_M) \left(aT_M^4 - E_R \right) + \chi(x) caT_{source}^4$$

$$\frac{\partial E_M}{\partial t} = -c \,\kappa_P(\rho, T_M) (a T_M^4 - E_R)$$

 Opacities and EOS are often given through look-up tables Consider exponential opacities of the form

$$\kappa(\rho,T) = \omega \rho^{\alpha} T^{\beta}$$

- Problem dimension: N_x = 100, N_p = 1
- Find sensitivities of temperatures w.r.t. opacity parameters (SensPVODE)

Scaled sensitivity of T_R w.r.t beta.

Early time effect of Plank opacity

Later effects of Rosseland opacity

Influence of Relative Permeability Parameters in Groundwater Simulation

$$\frac{\partial [s(p)\phi\rho]}{\partial t} - \nabla \cdot \left\{ \frac{Kk_r(p)\rho}{\mu} (\nabla p - \rho g \nabla z) \right\} = q$$

$$k_r(p) = \frac{\left\{ 1 - (\alpha|p|)^{n-1} \left[1 + (\alpha|p|)^n \right]^{-m} \right\}^2}{\left[1 + (\alpha|p|)^n \right]^{n/2}}$$

 Sensitivity of water pressure to parameters in the expression for relative permeability:

$$\alpha = a_1 \ln |K| + a_2$$

$$n = b_2$$

Software: KINSOL and SensKINSOL

Influence of Relative Permeability Parameters in Groundwater Simulation - Results

Atmospheric Event Reconstruction

$$\min_{f,c} \Im(c,f) := \frac{1}{2} \sum_{j=1}^{N_r} \iint_{t} (c - c^*)^2 \delta(x - x_j) d\Omega dt + \frac{1}{2} \beta R(f)$$

$$c_t - k\Delta c + \nabla c \cdot \vec{v} + f = 0$$
, in $\Omega \times (0,T)$
 $\nabla c \cdot \vec{n} = 0$, on $\partial \Omega \times (0,T)$
 $c = c_0(x)$, in Ω at $t = 0$

$$-\lambda_{t} - k\Delta\lambda - \nabla\lambda \cdot \vec{v} = g(c, c^{*}), \text{ in } \Omega \times (0, T)$$
$$(k\nabla\lambda + \lambda\vec{v}) \cdot \vec{n} = 0, \text{ on } \partial\Omega \times (0, T)$$
$$\lambda(x) = 0, \text{ in } \Omega \text{ at } t = T$$

Atmospheric Event Reconstruction

- CVODES for gradient and Hessian-vector products
- KINSOL for NLP solution
- Problem dimensions: N_{ODE}=4096, N_{NLP}=1024

Current and Future Work

- IDAS (forward and adjoint sensitivity variant of IDA)
 - Early 2007
- Automatic generation of derivative information
 - Incorporation of AD tools (forward/reverse)
- Improved checkpointing / alternatives to checkpointing
 - Storage of integrator decision history

Availability

Open source BSD license

www.llnl.gov/CASC/sundials

Publications

www.llnl.gov/CASC/nsde

The SUNDIALS Team

Peter Brown

Aaron Collier

Keith Grant

Alan Hindmarsh

Steven Lee

Radu Serban

Carol Woodward

Web site:

Individual codes download SUNDIALS suite download User manuals User group email list

end

Forward Sensitivity Analysis

For a parameter dependent system

$$\begin{cases}
F(x, \dot{x}, t, \rho) = 0 \\
x(0) = x_0(\rho)
\end{cases}$$

find $s_i=dx/dp_i$ by simultaneously solving the original system with the N_p sensitivity systems obtained by differentiating the original system with respect to each parameter in turn:

$$\begin{cases} F_{\dot{x}}\dot{s}_{i} + F_{x}s_{i} + F_{p_{i}} = 0 \\ s_{i}(0) = dx_{0}/dp_{i} \end{cases}, \quad i = 1,...,N_{p}$$

- Gradient of a derived function $g(t, x, p) \Rightarrow dg/dp = g_x s + g_p$
- Obtain gradients with respect to p for any derived function
- Computational cost (1+N_p)N_x increases with N_p

Adjoint Sensitivity Analysis

index-0 and index-1 DAE

$$\lambda^* F_{\dot{x}} \Big|_{t=T} = 0 \qquad \frac{dG}{d\rho} = \int_0^T (g_\rho - \lambda^* F_\rho) dt + (\lambda^* F_{\dot{x}}) \Big|_{t=0} X_{0\rho}$$

Hessenberg index-2 DAE

$$\begin{cases} \dot{x} = f^{d}(x, y, p) \\ 0 = f^{a}(x, p) \end{cases} \rightarrow \begin{cases} \dot{\lambda} + A^{*}\lambda + C^{*}\eta = -g_{x}^{*} \\ B^{*}\lambda = -g_{y}^{*} \end{cases}$$
$$A = \frac{\partial f^{d}}{\partial x}, B = \frac{\partial f^{d}}{\partial y}, C = \frac{\partial f^{a}}{\partial x}, \exists (CB)^{-1}$$

impose final conditions of the form
$$\lambda^*(T) = \xi^*C\Big|_{t=T}$$

At t = T:

$$\lambda^* B = -g_y \Rightarrow \xi^* CB = -g_y \Rightarrow \xi^* = -g_y (CB)^{-1}$$
$$f^a(x, p) = 0 \Rightarrow Cx_p = -f_p^a \Rightarrow \lambda^* x_p = -\xi^* f_p^a$$

$$\lambda^{*}(T) = -g_{y}(CB)^{-1}C\Big|_{t=T} \qquad \frac{dG}{dp} = \int_{0}^{T} (g_{p} + \lambda^{*}f_{p}^{d} + \eta^{*}f_{p}^{a})dt + \lambda^{*}(0)x_{0p} - g_{y}(CB)^{-1}f_{p}^{a}\Big|_{t=T}$$

$$\begin{cases} (\lambda^* F_{\dot{x}})' - \lambda^* F_{\dot{x}} = -g_{\dot{x}} \\ \lambda^* F_{\dot{x}} x_p = \dots \text{ at } t = T \end{cases}$$

$$G(x,p) = \int_0^T g(t,x,p)dt$$

$$\frac{dG}{dp} = \int_0^T (g_p - \lambda^* F_p)dt - (\lambda^* F_{\dot{x}} x_p)|_0^T$$